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Text generation requires producing text that is not only fluent, but also satisfies different constraints that control the semantics Algorithm of COLD
or style of the generated text.

Algorithm 1 Constrained Decoding w/ Langevin Dynamics.
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Key challenge of sampling from the text EBM: ) (2) )

. L (1) fluency constraint (2) future contextualization constraint (3) n-gram similarity constraint
 the normalizing factor Z is intractable

- the common discrete MCMC methods (e.g., Gibbs sampling) is too inefficient!
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Check out COLD decoding paper!!
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- continuous relaxation of discrete text: each token y, is modeled with its logit vector yt

" Langevin dynamics: y* V) « g™ — v B(5™) 4 ™

- Discretize the sampled continuous text vector with top-k filtering (see paper for more details)



