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Motivation
Modeling and generating language

• Language encapsulates ideas.


• Factual knowledge


• Molly Seidel won the bronze medal in the 2020 Olympic marathon. 

• State of the art GPT-3 language model:


•
Today’s lecture



Motivation
Modeling and generating language

• Language encapsulates ideas.


• Common sense


• I tipped the bottle. As a result, the liquid in the bottle poured out. 

• State of the art GPT-3 language model:


•



Motivation
Modeling and generating language

• Language encapsulates ideas.


• Logical reasoning


• Alice purchased three widgets, and Bob purchased three times as many. 
In total, Alice and Bob purchased 3 + (3 x 3) = 12 widgets.  

• State of the art GPT-3 language model:


•

AI is not solved yet
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Motivation
Modeling and generating sequences (text, code, …)

• Generating language sequences is useful. 

• Education


•



Today’s lecture
A common language modeling recipe underlies all of these applications. 

Theorem Proving

[Welleck et al 2021]

[Lample & Charton 2019]

Open-domain QA

[Roberts et al 2020]

Open-Ended Generation

[Lample & Charton 2019]

Symbolic Mathematics

[Welleck et al 2019]

Dialogue

[Liu et al 2021]

Commonsense

Long-form QA

Machine Translation

Program Synthesis

[Austin et al 2021]

[Chen et al 2021]

Formal Theorem Proving

[Han et al 2021][[Polu et al 2022]

https://arxiv.org/pdf/2104.01112.pdf
https://arxiv.org/pdf/2002.08910.pdf
https://aclanthology.org/P19-1363/
https://arxiv.org/pdf/2110.08387.pdf
https://arxiv.org/pdf/2107.03374.pdf
https://arxiv.org/pdf/2108.07732.pdf
https://arxiv.org/pdf/2102.06203.pdf
https://arxiv.org/pdf/2202.01344.pdf


Today’s lecture

• A common language modeling recipe underlies all of these applications. 


• Today’s lecture: 

• What is a language model?


• Generating sequences with a language model.

Modeling and generating sequences

Modeling Learning Decoding



What is a language model?

• , where  


•    sequence    e.g. the cat sat .   T can vary. 

•       token           e.g. cat 

•       vocabulary  e.g. {a, b, …, zebra, …} 

• ,  set of all sequences

y1:T = (y1, y2, …, yT) yt ∈ V

y1:T

yt

V

y ∈ 𝒴 𝒴

Setup



What is a language model?

• A language model is a probability distribution over all sequences


• 


• Example probability distribution: biased coin 


•

p(y)

p(y) = {0.4 y is 0
0.6 y is 1

Language model

y = 0 y = 1



What is a language model?

• A language model is a probability distribution over all sequences


• 


• Example language model


• 0.000013 if  is a. 
      0.000001 if  is aa. 
      … 
      0.019100 if  is a cat sat. 
      …

p(y)

p(y) = y
y

y

Language model

…

…

One square = one sequence 
All possible sequences — a lot!



What is a language model?
Sequence-to-sequence with a language model

p(translation |hi, how are you)

…

…

…

…
p(translation | the cat sat.)

• A language model can accept an input by conditioning on an input prefix (‘prompt’):


• 


• Machine translation:


• Prefix            : sentence in English 
Continuation : sentence in Japanese


• General task:


• Prefix : instructions, examples, start of output 
Continuation: output

p(yk+1:T |y1:k)



What is a language model?
Sequence-to-sequence with a language model

• A language model can accept an input by conditioning on an input prefix :


• 


• Machine translation:


• Prefix            : sentence in English 
Continuation : sentence in Japanese


• General task:


• Prefix : instructions, examples, start of output 
Continuation: output

p(yk+1:T |y1:k)

• How do we learn a language model from data?


• How do we generate text from a language model?



The building blocks | Modeling

• First step: use the chain rule of probability: 


• 


• the cat sat <end>  
       the cat|the sat|the cat <end>|the cat sat

p(y1:T) =
T

∏
t=1

p(yt |y<t)

p( )=
p( )p( )p( )p( )

Autoregressive language model

Modeling

https://en.wikipedia.org/wiki/Chain_rule_(probability)


The building blocks | Modeling

• Language modeling is reduced to classification


• 


• the cat sat <end>  
       the cat|the sat|the cat <end>|the cat sat  

• Sequence probability = 
          product of next-token probabilities

p(y1:T) =
T

∏
t=1

p( yt
⏟

| y<t⏟ )

p( )=
p( )p( )p( )p( )

Autoregressive language model

Next  
Token

Previous 
Tokens

Modeling



The building blocks | Modeling

• Language modeling is reduced to classification


• 


• 


• Input:  
Output: probability distribution over V


• Target: 

p(y1:T) =
T

∏
t=1

p( yt
⏟

| y<t⏟ )

p(yt |y<t)

y<t ∈ V × V × . . . V

yt ∈ V

Autoregressive language model

Next  
Token

Previous 
Tokens …

Classifier

0.810.110.01

za

the cat

and sat

0.00…

… …

…

Modeling



…

The building blocks | Modeling

• Use a neural network for language modeling


• 


• 


• Input:  
Output: probability distribution over V


• Target: 

pθ(y1:T) =
T

∏
t=1

pθ( yt
⏟

| y<t⏟ )

pθ(yt |y<t)

y<t ∈ V × V × . . . V

yt ∈ V

Neural autoregressive language model

Next  
Token

Previous 
Tokens

Neural 
Network

0.810.110.01

za

the cat

and sat

0.00…

… …

…

• What kind of neural network?


• How do we learn the 
parameters ?θ

Modeling



The building blocks | Modeling

• Want: 


• Encode context into a vector:


• , 


• Transform into |V| token scores:


•  , where 


• Take the softmax to get a probability vector


•

pθ(yt |y1, …, yt−1)

ht = fθ(y1, …, yt−1) ht ∈ ℝd

st = Eht st ∈ ℝ|V|, E ∈ ℝ(|V|×d)

pθ( ⋅ |y1, …, yt−1) = softmax(st)

What kind of neural network?

Diagrams: https://lena-voita.github.io/nlp_course/language_modeling.html 

Modeling

https://lena-voita.github.io/nlp_course/language_modeling.html


The building blocks | Modeling

• Common choices for the neural 
network:


• Recurrent neural network


• Feedforward + attention 
(transformer)


• Further details are out of scope for 
this lecture!

What kind of neural network?

[Mikolov 2010]

[Vaswani 2017]

Modeling

https://www.fit.vutbr.cz/research/groups/speech/publi/2010/mikolov_interspeech2010_IS100722.pdf
https://proceedings.neurips.cc/paper/2017/file/3f5ee243547dee91fbd053c1c4a845aa-Paper.pdf


The building blocks | Learning

• Collect a dataset of sequences 


• D: a book


• D: all text on the internet


• …


• Tokenize each sequence, 


• We’ll see this concretely in the lab!

D = {y1, …, yN}

yi = (y1, …, yTi
)

How do we learn the parameters ?θ

p*(y)

Learning



• For each training sequence  and step t:


• Model predicts 


• Target is 


• Use cross-entropy loss:


•

y = (y1, …, yT)

pt
θ( ⋅ |y<t) ∈ ΔV

pt
* = {1 yt

0 otherwise
∈ ΔV

ℒt = − ∑
y∈V

pt
*(y)log pt

θ(y |y<t)

= − log pt
θ(yt |y<t)

The building blocks | Learning
How do we learn the parameters ?θ

p*(y)

Diagrams: https://lena-voita.github.io/nlp_course/language_modeling.html 

Learning

https://lena-voita.github.io/nlp_course/language_modeling.html


• Classifier view: 

• We’ve used cross-entropy loss to train classifiers previously in the course…


• Estimation view: Loss summed over the entire dataset: 

•
 

• Finds parameters that make the observed data D most probable;  
i.e. maximum likelihood estimation

min
θ

− ∑
y∈D

∑
t

log pθ(yt |y<t)

≡ max
θ ∑

y∈D

log pθ(y)

The building blocks | Learning
Why cross-entropy loss?

p*(y)

Learning



The building blocks | Learning

• Makes  match an underlying ‘true’ distribution 


•

pθ p*(y)

min
θ

DKL(p* | |pθ) = min
θ

− ∑
y∈𝒴

p*(y)log
pθ(y)
p*(y)

≡ min
θ

− ∑
y∈𝒴

p*(y)log pθ(y) + const

= − 𝔼y∼p*
log pθ(y)

≈ min
θ

−
1

|D | ∑
y∈D

log pθ(y)

≡ max
θ ∑

y∈D

log pθ(y)

Why cross-entropy loss? | Distribution matching view

pθ(y)

p*(y)

Definition of expected value

“Monte-Carlo” approximation of expected value

E.g. distribution that generated all internet text…

Learning



The building blocks | Learning

• Scaling laws: more {compute, data, parameters}  better loss⟹

Why cross-entropy loss?

Learning

[Kaplan et al 2020]

https://arxiv.org/pdf/2001.08361.pdf


• We’ve now learned a neural language model  from data. 


• We have a distribution over all sequences.


• Next: To generate text, we use a decoding algorithm.

pθ

The building blocks | Recap
Recap

pθ(y)
p*(y)



Building blocks | Decoding

• Goal: generate a continuation  given a model  


• We want to generate , starting from 


• We generate one-token, feed it into the model, and repeat:


• 


• 


• 


• … => ( )

y pθ

y = (y1, …, yT) y0 = ⟨start⟩

y1 = generate(pθ(y |y0))

y2 = generate(pθ(y |y0, y1))

y3 = generate(pθ(y |y0, y1, y2))

y1, …, yT

Generating sequences from our model

Decoding



Building blocks | Decoding

• Goal: generate a continuation  given a model  and prefix 


• Sampling


• 


• Mode-seeking


•

y pθ x

y ∼ pθ( ⋅ |x)

y = arg max
y

pθ(y |x)

Generating sequences from our model

Decoding



Building blocks | Decoding

• Ancestral sampling: sample from the model’s distribution


• Until :


• 


•  is a sample from , since


•

yt = ⟨end⟩

yt ∼ pθ( ⋅ |y<t)

y pθ(y)

pθ(y) =
T

∏
t=1

pθ(yt |y<t)

Generating sequences from our model

Model

Target

Generated

Target

Sequence-levelNext-token

Next-token: https://lena-voita.github.io/nlp_course/language_modeling.html 

Decoding

https://lena-voita.github.io/nlp_course/language_modeling.html


Building blocks | Decoding

• Greedy decoding: select the most-probable token at each step


• Until :


• 


•  is a (naive) approximation of


•

yt = ⟨end⟩

yt = arg max
y∈V

pθ( ⋅ |y<t, x)

y

arg max
y

pθ(y |x)

Generating sequences from our model

Model

Target

Sequence-levelNext-token

Target

Generated

Decoding



Building blocks | Decoding

• Temperature Sampling: adjust each distribution & sample


• Until :


• 


• Where , 
           


•  small: “sharpens” the distribution


• : greedy decoding


•  big: “flattens” the distribution


• : uniform distribution

yt = ⟨end⟩

yt ∼ pτ
θ( ⋅ |y<t)

pτ
θ( ⋅ | . . . ) = softmax(st /τ)

τ ∈ ℝ>0

τ

τ → 0

τ

τ → ∞

Generating sequences from our model

Model

Target

Generated

Target

Sequence-levelNext-token

Target
Generated

τ : 0.2 τ : 2.0 τ : 2.0τ : 0.2

Decoding



Building blocks | Decoding

• Top-k sampling: sample from the -most-probable tokens


• 


• k small: only sample from highly-ranked tokens


• =1: greedy decoding


• =|V|: ancestral sampling

k

yt ∼ ∝ {pθ(y |y<t) y ∈ top-k
0  otherwise

k

k

Generating sequences from our model

Model

Target

Sequence-levelNext-token

Target

Generated

Top-4

Decoding

Yes- these holes are problematic, see [Welleck et al 2020]: 
Consistency of a Recurrent Language Model With Respect to Incomplete Decoding

https://arxiv.org/pdf/2002.02492.pdf


Building blocks | Decoding

• What is going on? Distributional view


• Using a decoding algorithm gives us a 
new generation distribution 


• In practice, we do this with new per-
step distributions, . 

• Varying the decoding algorithm varies the 
generation distribution .


• Generating means sampling from .

q(y |pθ)

q(t)(yt |pθ, y<t)

q

q

Generating sequences from our model

p*(y)
pθ(y)

q(y)

Decoding



Recap

• Today’s language models consist of three building blocks:


• An autoregressive model that reduces language modeling to classification.


• Learning the model’s parameters by maximum likelihood.


• Generating with a decoding algorithm.

Modeling and generating sequences

Modeling Learning Decoding



From distributions to assistants

• Language models are not directly trained to perform tasks


• One current solution: fine-tune them to perform tasks!

Language 
Modeling

Supervised 
Instructions

RL from 
human 

feedback

*

* we don’t know the actual learning procedure for chat-gpt

Training language models to follow instructions with human feedback

https://arxiv.org/pdf/2203.02155.pdf


From distributions to assistants

• Collect  pairs written by humans for various tasks


• E.g. “summarize this document….”, “translate this sentence…”


• Fine-tune a large language model on the pairs


• I.e. maximize 

(prompt, output)

p(output |prompt)

Language 
Modeling

Supervised 
Instructions



From distributions to assistants

• Generate multiple outputs for a given prompt.


• Learn a neural network that scores 


• “Reward model”. Pair orderings are determined by humans.


• Use a reinforcement learning algorithm to optimize the reward

p(outputi > outputj) ∈ [0,1]

Language 
Modeling

Supervised 
Instructions

RL from 
human 

feedback



From distributions to assistants

Training language models to follow instructions with human feedback

https://arxiv.org/pdf/2203.02155.pdf


From distributions to assistants



Thanks for your attention!


