Generating Sequences by Learning to [Self-]Correct
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Self-correctors Self-correction

How do we control and improve a language model's generations after it is trained? Self-correctors improve upon the base generator, and natural language feedback brings additional

Key idea: plug in a learned corrector that iteratively improves outputs oains. Diverse tasks: toxicity, lexical constraints, mathematical program synthesis.
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Self-corrector = generator *+ learned corrector (Gehman et al., 2020) (Lin et al., 2019) (Mishra et al., 2022)
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Self-correctors offer several benefits, including: = Toxicity: fine-grained properties from Perspective API, e.g.
1. Controlling generators without modifying them = Lexical constraints: missing words, e.g. add ‘bow’ and ‘prepare’
2. Decomposing problems into multiple iterations  Math: few-shot prompted GPT-3, e.g. 2 is missing

3. Using natural language feedback for (1) and (2)
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Y~ = Natural language feedback: sources (e.g., humans, models) and formats (e.g., line-by-line).

Figure 1. Self-corrective learning iteratively trains a corrector by generating hypotheses and corrections, forming * Other learning algorithms for the corrector: e.g. reinforcement learning

value-improving pairs, and selecting those with high similarity for learning.



